

Lecture No. 21

FACUALTY PROFILE

Mr. Muhammad Younis
(Lecturer Commerce)

Several Times Topper in PPSC \& FPSC in this field
\& 6 times Appointed against different positions
of Accounts \& Audit

Contact Details: 00923001004803 00923001004804

iirsacademy@gmail.com

3. Internal Rate of Return

Definition:
The discount rate that equates the present value of the project's free cash flows (inflow) with the project's initial cash outlay.

Accept/Reject criteria

IRR_> firm's required rate of return or cost of capital: accept
$I R R$ < firm's required rate of return or cost of capital: reject

What is the IRR Formula?

The IRR formula is as follows:

$$
0=C F_{0}-\frac{C F_{1}}{(1+I R R)}+\frac{C F_{2}}{(1+I R R)^{2}}+\frac{C F_{3}}{(1+I R R)^{3}}+\ldots+\frac{C F_{n}}{(1+I R R)^{n}}
$$

	Where: $C F_{0}=$ Initial Investment / Outlay $C F_{1}, C F_{2}, C F_{3} \ldots C F_{n}=$ Cash flows
Firm accepted or required rate of return. Firm desired rate	$N=$ Holding Period $N P V=$ Net Present Value $I R R=$ Internal Rate of Return

Lakshmi company has a project to invest Rs 1000 which earn to Rs. 1300 in four years with cash flow of 500 in $1^{\text {st }}$ year and 400 in $2^{\text {nd }}$ year 300 in $3^{\text {rd }}$ and 100 in $4^{\text {th }}$ year. If cost of capital is 15%.
we should accept this project or not??

Net Present Value $\overline{\overline{0}}=N_{S}$

$$
0=\frac{500}{(1+\mathrm{IRR})^{1}}+\frac{400}{(1+\mathrm{IRR})^{2}}+\frac{300}{(1+\mathrm{IRR})^{3}}+\frac{100}{(1+\mathrm{IRR})^{4}}-1000
$$

How to find terminated value

What is the IRR Formula?

The IRR formula is as follows:

(higher rate - lower rate) (highest amount - initial investment)
IRR= lowest rate of return + \qquad
(Higher amount- lower amount)

IRR calculation with example

IIR Inspectors company have a project to invest RS 80000 with proposal to cost of capital is 12%. Further his future free cash flows are 15000 in $1^{\text {st }}$ year, then 20000 in 2 nd 25000 in $3^{\text {rd }}$ yead, 30000 and 35000 in $4^{\text {th }}$ and $5^{\text {th }}$ respectively. Should guys you want to invest in this project??? With your strong suggestion with the help of IRR concept with analysis

So our formula to find a \% (terminated value) which equate our invest ZERO as we early understand.

(Higher rate IRR - lower rate IRR) (highest amount - initial investment)
IRR= lowest rate of return +
(Higher amount- lower amount)

According to formula IRR first we need to find two rates of return or IRR for formula

Highest rate?
Lowest rate?
Highest Amount positive NPV?
Lowest Amount Negative NPV ?

Solution

years	cash flows
0	-80000
1	15000
2	20000
3	25000
4	30000
5	35000
total cash inflows	125000

We need to find PV with a rate with equated 125000 to 80000.

years	cashflows	PV formula
0	. 80000	
1	15000	FV/(1+1R\| $/ 1$
2	2000	FV/(1+1R)/2
3	2500	$\mathrm{FV} /\left(1+1 \mathrm{R} /{ }^{1 / 3}\right.$
4	30000	FV/ $/ 1+1 \mathrm{R} /{ }^{\text {/ }}$
5	35000	FV/ $/ 1+1 / 1 / 5$

IIR Inspectors company have a project to invest RS. 80000 with proposal to cost of capital is 12%.

Solution
Lets start with 15%

years	cash flows	PV formula	IRR 15\%	
0	-80000			
1	15000	$\mathrm{FV} /(1+\| \| \mathrm{R})^{\wedge} 1$	$\mathrm{Rs} 13,043$	
2	20000	$\mathrm{FV} /(1+\| \| \mathrm{R})^{\wedge} 2$	$\mathrm{Rs} 15,123$	
3	25000	$\mathrm{FV} /(1+\\| \mathrm{R})^{\wedge} 3$	$\mathrm{Rs} 16,438$	
4	30000	$\mathrm{FV} /(1+\mid \mathrm{R})^{\wedge} 4$	$\mathrm{Rs} 17,153$	
5	35000	$\mathrm{FV} /(1+\| \| \mathrm{R})^{\wedge} 5$	$\mathrm{Rs} 17,401$	
total cash inflows	125000		$\mathrm{Rs} 79,158$	

Lowest Amount Negative NPV ?

Near and just
below to 80000

Solution
Lets start with 15\% Lets start with 13\%

years	cash flows	PV formula	IRR 15\%	IIR 13\%	
0	-80000				
1	15000	$\mathrm{FV} /(1+\\| R)^{\wedge} 1$	Rs 13,043	Rs13,274	
2	20000	$\mathrm{FV} /(1+\\| \mathrm{R})^{\wedge} 2$	Rs15,123	Rs15,663	
3	25000	$\mathrm{FV} /(1+\\| R)^{\wedge} 3$	Rs16,438	Rs17,326	
4	30000	$\mathrm{FV} /(1+1 / \mathrm{R})^{\wedge} 4$	Rs17,153	Rs18,400	
5	35000	$\mathrm{FV} /(1+\\| R)^{\wedge} 5$	Rs17,401	Rs18,997	
total cash inflows	125000		Rs79,158	Rs83,660	

Highest Amount positive NPV?

Near and just it is so high from
below to $80000 \quad 80000$

Solution

years	cash flows	PV formula	IRR 15\%	IIR 13\%	NPV 14\%	
0	-80000					
1	15000	$\mathrm{FV} /(1+\| \| \mathrm{R})^{\wedge} 1$	Rs13,043	Rs13,274	Rs13,158	
2	20000	$\mathrm{FV} /(1+\\| \mathrm{R})^{\wedge} 2$	Rs15,123	Rs15,663	Rs15,389	
3	25000	$\mathrm{FV} /(1+\mid \mathrm{R})^{\wedge} 3$	Rs16,438	Rs17,326	Rs16,874	
4	30000	$\mathrm{FV} /(1+\mid \mathrm{R})^{\wedge} 4$	Rs17,153	Rs18,400	Rs17,762	
5	35000	$\mathrm{FV} /(1+\\| \mathrm{R})^{\wedge} 5$	Rs17,401	Rs18,997	Rs18,178	
total cash inflows	125000		Rs79,158	Rs83,660	Rs81,362	

> | Near and just | it is so high from | Near and just above |
| :---: | :---: | :---: |
| below to 80000 | 80000 | to 80000 |

(higher rate - lower rate) (highest amount - initial investment)
IRR= lowest rate of return +
(Higher amount- lower amount)

IRR =

$$
(15 \%-14 \%)(81361-80000)
$$

14+
(81361-79159)

$$
14+\frac{(1)(1361)}{(2202)}=14.61 \%
$$

14.61\%

So this is the rate of Actual IRR
Where

$0=80000-80000$

Now project is accepted or rejected???
IIR Inspectors company have a project to invest RS. 80000 with proposal to cost of capital is 12%.

Thank
 You

Quandertions we have Answers

